
International Journal of Thermophysics, Vol. 9, No. 6, 1988 

The Determination of the Second and Third 
Virial Coefficients from p VT-X Data of 
Binary Systems 1 

J. P. J. Michels,  2 J. A. Schouten, 2 and M. Jaeschke 3 

The compressibility factor of multicomponent systems can be obtained in terms 
of virial coefficients of the pure components and their binary mixtures. This 
paper concerns a method with which, for that purpose, the second and third 
virial coefficients for these binaries have been determined from experimental 
data. From useful data, second and third virial coefficients are obtained as a 
quadratic function of the temperature. The density domain for which these 
results are applicable is discussed. When ample data are available, results for a 
sample mixture can be obtained in a straightforward manner. Nevertheless, it is 
shown that under much less favorable conditions--sometimes even when pure- 
component data are lacking--fairly good results can still be obtained. In that 
case, the choice for an appropriate combining rule has to be considered 
carefully. Finally, the involvement of ternary mixture data, both obtained 
experimentally and predicted by the equation, is considered. 
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1. I N T R O D U C T I O N  

I t  is a w e l l - k n o w n  fact  t h a t  t h e  c o m p r e s s i b i l i t y  f a c t o r  of  b o t h  p u r e  gases  

a n d  ga s  m i x t u r e s  c a n  be  d e s c r i b e d  c o n v e n i e n t l y  w i t h i n  a fa i r  d e n s i t y  r a n g e  

w i t h  t h e  s i m p l e  r e l a t i o n ,  

1 Paper presented at the Tenth Symposium on Thermophysical Properties, June 20-23, 1988, 
Gaithersburg, Maryland, U.S.A. 

2 Van der Waals Laboratory, University of Amsterdam, Amsterdam, The Netherlands. 
3 Ruhrgas, Essen, Federal Republic of Germany. 

985 

0195-928X/88/1100-0985506.00/0 �9 1988 Plenum Publishing Corporation 



986 Michels, Schouten, and Jaeschke 

Z =  1 + Bp + Cp= 

z = P  V 
RT 

1 
V = -  

P 

(1) 

in which p, V, R, and T denote, respectively, the pressure, molar volume, 
gas constant, and absolute temperature. The parameters B and C are 
commonly indicated as "second" and "third virial coefficients." 

From statistical mechanics it is also known that the virial coefficients 
of an N-component mixture can be written as 

N 

Bmix ---- E xixjBij (Bii = Bi) 

"J (2) 
N 

Cmix : 2 XiXjXkCi j  k (Ciii : Ci) 
i,j,k 

From Eq. (2), it can be seen that Bmi x is determined completely by the 
second virial coefficient of the pure components and binary terms Bo. In 
the case N =  2, Cm~x is also determined by pure and binary terms; for N >  2, 
ternary terms are also present. 

This paper concerns a method with which the binary terms have been 
determined from experimental data. The work was performed in order to 
obtain compressibility factors for natural gases, but the method is believed 
to have a general applicability. 

2. M E T H O D  

2.1. Pure Components 

From Eq. (2), it is clear that, before getting started with binary 
systems, one first needs to obtain accurate data for the pure components. 
At this point, it is worthwhile to recapitulate the temperature dependences 
of the virial coefficients. These features are displayed graphically in Fig. 1. 
The units are arbitrary: a logarithmic temperature scale has been chosen, 
since the temperature dependence decreases rapidly at high temperatures. It 
can be scen that the coefficient B changes in sign at ~ 2.7 Tcrit (the Boyle 
temperature) and shows only a shallow maximum at high temperatures. 
Thc third virial cocfficient is clearly nonmonotonic, becomes positive at 
~0.7 Tcrit, and has a pronounced maximum around ~0.9 Tcrit. In our 
work, the temperature dependence of B could be described perfectly as a 
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Fig. 1. The global temperature dependence 
of the second and third virial coefficient 
(T/Tc on logarithmic scale). 

quadratic function of T. Due to the relatively short temperature interval 
considered in our work, a second-order fit for C(T) could also be applied, 
despite the presence of the maximum. 

The first step in the procedure was the recollection and evaluation of 
experimental data. From these, a selection was made with the following 
considerations. 

(i) Only primary data for Z could be used; no smoothed values, 
results in parametric form, or values for virial coefficients 
already derived from experiments were taken into account, 

(ii) The pressure and temperature range had to be within the desired 
range. As far as the pressure was concerned, only data up to the 
maximum partial pressure of the component in the mixtures 
which were to be considered (thus, in our case the natural gases) 
were needed. Within this range, a fair number of data points had 
to be available. Moreover, the conditions of pressure and 
temperature should be such that the system is not near the phase 
separation surface. 

(iii) The accuracy quoted by the authors has to be sufficient. 
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The next step was a check of internal consistency of each data set. 
Data sets with conflicting results were discarded. For  each isotherm in a 
data set, a least-mean-squares deviation fit with 

Z =  1 + b p + c p  2 

was made, without comparison of b and c with virial coefficients of other 
data sets. Once again, poor results justified the removal of the whole set. 
Finally, the best second-degree fits for b and c with the temperature were 
calculated. Here also, spurious results led to the removal of the data. After 
this screening procedure, final second-order functions B(T) and C(T) were 
determined from all remaining data for each Pure component. 

Of the natural gases considered, the most important constituent com- 
ponents are CH4, N2, CO 2, and C2H6; the temperature ranges from 270 
to 330 K. Initially, pressures up to 80 bar were considered. Later, the upper 
limit was increased to 120 bar. The compressibility of the pure components 
can be predicted within 0.05% up to the relevant maximal partial 
pressures. As an example, the results for the virial coefficients of C H 4 ,  

being the most important component, are given in Table I. The first row 
gives the results for the analysis up to 80 bar; the second, for the last 
analysis up to 120 bar. 

In the pressure range under consideration, it was possible to describe 
the compressibility factor within the experimental accuracy, taking only B's 
and C's into account. For  instance, in the case of C H 4 ,  the root mean 
square deviation is about 0.015% for a set of about 60 data points. In this 
example, the numbers are given with all significant digits. This suggests an 
accuracy which is much higher than commonly quoted for the virial 
coefficients, i.e., roughly ~ l c m 3 . m o 1 - 1  for B and ~200cm6 .mo1-2  
for C [1].  

It must be emphasized that this does not mean that the virial coef- 
ficients have indeed been determined with a much higher accuracy. In fact, 
in our calculations, B and C are parameters which give a good prediction 
of the compressibility factor, provided that they are used simultaneously. It 
is not claimed that these coefficients are the same as the virial coefficients in 
the sense of statistical physics. Nevertheless, in Table I it can be seen that 

Table I. Results for the Second and Third Virial Coefficients of CH 4 Obtained 
from Experimental Compressibility Data up to 80 and up to 120 bar d 

1~80 bar 
0-120 bar 

B(273) = -53.37; B(298) = --42.77; C(273) = 2661; C(298) = 2406 
B(273) = -53.41; B(298) = --42.88; C(273) = 2677; C(298) = 2440 

aB in cm 3 .mol-1; C in em6.mol 2. 
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the results for B are virtually independent of the pressure range condidered, 
while----even in the worst case--the change in C due to the extension of the 
pressure range is still an order of magnitude less than uncertainties 
generally quoted for third virial coefficients. 

2.2. Binary Mixtures 

According to Eq. (2), the virial coefficients for binary mixtures are 
given by 

Bm= x~B11 + 2xl x2BI2 -b x2B22 (3a) 

Cm=X3ClI1-']-3x~X2Cl12+3x1x2C122+x3C222 (3b) 

In Eqs. (3a) and (3b), both cross terms and coefficients for the pure com- 
ponents are present. It is an essential feature of our work that, for the latter 
coefficients, only the results of the analysis described in the previous section 
have been substituted. Moreover, the experimental data for mixtures have 
always been obtained from other sources than for the pure components, 
even in the case that data for mixtures and pure components have been 
determined by the same experiments. The aim of this constraint is the 
diminution of the influence of systematic errors into the final results. Now 
that the coefficients for the pure components have been fixed, three coef- 
ficients are left to be determined from experimental data of binary mixtures. 
With each coefficient being described as a three-parameter function of the 
temperature, the results depend once more on nine parameters. Thus, in 
order to obtain a sensible fit, one needs ample data points, not only in the 
density and temperature range but also for a variety of compositions. 
Where possible, this parameter fitting has been performed. Again, only 
well-screened data have been used. The results for the pure components B 
and C were invariably substituted and the other parameters were 
calculated simultaneously by a least-mean-squares deviation fit. For nearly 
all the binary systems under consideration, the number of data points was 
enough to treat B~2 as an independent parameter. In those cases where the 
number of data points is limited, the number of degrees of freedom (i.e., the 
number of parameters) must also be decreased. This can be done with the 
help of combination rules, which link the mixing B's and C's in some way 
to the B and C of the pure component. 

A well-known combining rule for B12 is given by 

BI2 = ~12(BII B22) 1/2 (4) 

Substituting Eq. (4) in Eq. (3a) reduces the number of parameters by two. 
Note that the temperature dependence of Bm is now determined by the 
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temperature dependence of Bll and B22. In many cases, 1~21 will be of the 
order 1. Problems arise when one of the pure components is around the 
Boyle temperature or even on the other side of it. In that case a better 
result may be obtained with 

B~2 = ~(Bll + B22 ) (5) 

which has, incidentally, been applied in our work. 
Because Cm depends on twice as many parameters, to be determined 

from binary mixtures, the drawback of insufficient data is even more 
serious. In case data are available for a single composition, a free- 
parameter fit easily results in very unreliable values for C m  and C122; they 
can become an order of magnitude larger than expected and with the 
opposite sign. Clearly, in that case the mixing terms compensate mutually 
up to a great extent. An obvious mixing rule that can be used to constrain 
the results is, in analogy to Eq. (4), 

ci/k = (i/k(CiiiCi~Ck~k)w3; i = j  or j = k (6) 

This relates the temperature dependence of the mixing C's to the C's of 
pure components. Nevertheless, this method can easily result in unrealistic 
values for ~m and ~122; for instance, I~[ >> 1 but opposite in sign. To over- 
come this problem, one can oppose the condition 

fill2 = ~122 (7)  

but it is to be expected that the fit for the compressibility factor will 
become less satisfactory. An even more serious consequence of this con- 
straint may be that the values for the B's will also be affected, i.e., errors in 
C are compensated by introducing errors in B. 

Recently, a new combination rule for third virial coefficients of 
mixtures has been proposed by McGregor et al. [2]. An attractive feature 
of this rule is that it is based on physical considerations of three-particle 
interactions: 

c~1~ - C 1 ~  = -~ (c ,H  - c ~ )  (8 )  

In those cases where we applied this rule, the final fit for the com- 
pressibility factor was as good as for a completely free nine-parameter fit. 
Moreover, it gave the same numbers for B12. 

The usefulness of the procedure mentioned above can be demonstrated 
by an example given in Table II. The numbers pertain to a mixture of CH 4 
and CO. For this mixture, reliable results for the compressibility factor 
were available for only one single mixture (3% CO). The analysis was 
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Table II. Results for the Second and Third Cross Virial Coefficients 
for the Mixture CH4-CO (for Methods See Text) 

991 

T(C) Blz(cm 3. tool-  1) Cll2(cm 6. mol-2) C122(cm 6. mol -  2) 

Method a: RMS dev ~ 8 x 10 -5 

0 -31.2 -17,757 656,703 
20 -26.3  - 16,525 617,583 
40 - 20.0 - 15,498 580,106 

Method b: RMS dev ~ 1 x 10 4 

0 - 30.7 2,372 2,115 
20 - 24.9 2,208 1,989 
40 - 18.7 2,070 1,869 

Method c: RMS dev~8  x 10 -s  

0 -31 .2  2,545 2,196 
20 -26.3 2,496 2,277 
40 - 19.9 2,321 2,118 

performed using three methods: (a) with free parameters; (b) using the 
relation ~112 = ~122 = 1; and (c) using Eq. (8) 

Note that method c leads essentially to the same values for B and the 
same RMS deviation as method a, but method c gives sensible numbers for 
C~12 and C12~. The constraint applied in method b is reflected in the 
increase in the RMS deviation. 

Generally, very little is known about cross third virial coefficients. One 
of the few examples that can be found in the literature pertains to the 
mixture CH4-N 2. In Table III, results for B~2, C1~2, and C122 obtained 
from Ref. 1 are given in comparison with the results of our calculations for 
this mixture. From this table it can readily be seen that the results are in 
very good agreement, although this agreement is of modest meaning due to 
the large uncertainty limits in the published results. 

Table Ill. Comparison of New Results for Cross Virial Coefficients for the 
Mixture CH4-N2 at 291.4 K with Published Data 

B12 ( cm3 "mol-l) Ca12 (cm 6 .mol 2) C122 (cm 6 "mol-2) 

Dymond and Smith [1 ] -20.1 + 0.4 2100 + 500 1600 + 500 
This work - 20.29 2054 1722 

840/9/6-7 
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In our final work, which was concerned with natural gases, the third 
virial coefficients of some pure components were not available. Those com- 
ponents (heavy hydrocarbons) are present only at rather low concen- 
trations, e.g., less than 1%. This does not turn out to be a problem, not 
only because C has a low value for these components but also, as can be 
seen from Eq. (3b), because their contributions are negligible since they are 
multiplied by the third power of the concentrations. Even the contribution 
of C122 can, in some cases, be neglected. 

A final remark should be made about ternary coefficients. As noted in 
Section 1, for mixtures with more than two components the third virial 
coefficient Cmix also contains a ternary term: x l x z x 3 C l 2  3, Experimental 
data for ternaries are scarce. In fact, one can calculate values for C123 to 
obtain the best fit for the compressibility, for instance, as we have done for 
the mixture C H 4 - C z H 6 - C 3 H 8  . Nevertheless, one must be aware that the 
result for this term has a poor meaning in physical sense: it contains com- 
pensations for the shortcomings in the values for all the other terms! In 
those cases it is often better to assume ~,jk = 1 in Eq. (6). 
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